
J
H
E
P
0
7
(
2
0
0
7
)
0
0
9

Published by Institute of Physics Publishing for SISSA

Received: May 4, 2007

Accepted: June 25, 2007

Published: July 4, 2007

Landau-Lifshitz sigma-models, fermions and the

AdS/CFT correspondence

Bogdan Stefański jr.
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construct the PSU(2, 2|4)/PS(U(2|2)2) Landau-Lifshitz sigma-model. This sigma model

describes the thermodynamic limit of the spin-chain Hamiltonian obtained from the com-

plete one-loop dilatation operator of the N = 4 super Yang-Mills (SYM) theory. In the

second part of the paper, we identify a number of consistent truncations of the Type IIB

Green-Schwarz action on AdS5×S5 whose field content consists of two real bosons and 4,8

or 16 real fermions. We show that κ-symmetry acts trivially in these sub-sectors. In the

context of the large spin limit of the AdS/CFT correspondence, we map the Lagrangians of

these sub-sectors to corresponding truncations of the PSU(2, 2|4)/PS(U(2|2)2) Landau-

Lifshitz sigma-model.
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1. Introduction

The gauge/string correspondence [1] provides an amazing connection between quantum

gauge and gravity theories. The correspondence is best understood in the case of the max-

imally supersymmetric dual pair of N = 4 SU(N) super-Yang-Mills (SYM) gauge theory

and Type IIB string theory on AdS5 × S5. Recent progress in understanding this duality

has come from investigations of states in the dual theories with large charges [3 – 5]. In

these large-charge limits (LCLs) it is possible to test the duality in sectors where quan-

tities are not protected by supersymmetry. Typically, one compares the energy of some

semi-classical string state with large charges (labelled schematically J) to the anomalous

dimensions of the corresponding operator in the dual gauge theory, using 1/J as an ex-

pansion parameter which supresses quantum corrections. A crucial ingredient, which made

such comparisons possible, was the observation that computing anomalous dimensions in

the N = 4 SYM gauge theory is equivalent to finding the energy eigenvalues of certain

integrable spin-chains [6] (following the earlier work on more generic gauge theories [7]). At

the same time the classical Green-Schwarz (GS) action for the Type IIB string theory on

AdS5×S5 was shown to be integrable [21]. The presence of integrable structures has led to

an extensive use of Bethe ansatz-type techniques to investigate the gauge/string duality [8].

In particular, impressive results for matching the world-sheet S-matrix of the GS string

sigma-model with the corresponding S-matrix of the spin-chain have been obtained [10].

The matching of anomalous dimensions of gauge theory operators with the energies of

semi-classical string states was shown to work up to and including two loops in the ’t Hooft

coupling λ. At three loops it was shown that the string and gauge theory results differ. As

has been noted many times in the literature, this result should not be interpretted as a fal-

sification of the gauge/string correspondence conjecture. Indeed, while the (perturbative)

gauge theory computatons are done at small values in λ, they are compared to dual string

theory energies which are computed at large values of λ and as such are not necessarily

comparable. It has then been a fortunate coincidence that the one- and two-loop results

do match.

This match was first established in a number of particular semi-classical string solutions

and corresponding single-trace operators [5]. Later it was shown that, to leading order in

the LCL, for some bosonic sub-sectors the string action reduced to a generalised Landau-

Lifshitz (LL) sigma model, which also could be obtained as a thermodynamic limit of the

corresponding spin-chain [13 – 16, 18] (see also [20]). In this way, by matching Lagrangians

on both sides one can establish that energies of a wide class of string solutions do indeed

match with the corresponding anomalous dimensions of gauge theory operators without

having to compute these on a case-by-case basis.

A natural extension of this programme is to match, to leading order, the LCL of the

full GS action of Type IIB string theory on AdS5 × S5 to the thermodynamic limit of

the spin-chain corresponding to the dilatation operator for the full N = 4 SYM gauge

theory; including fermions on both sides of the map is interesting given the different way

in which they enter the respective actions. On the spin-chain side fermions are on equal

footing to bosons [19, 17] - the LL equation, which describes the thermodynamic limit of
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the system, relates to a super-coset manifold when fermions are included, as opposed to a

coset manifold when there are no fermions. In particular, both fermions and bosons satisfy

equations which are first order in τ and second order in σ. On the other hand, fermions

in the GS action possess κ-symmetry [23 – 26] and their equations of motion are first order

both in τ and σ. Previous progress on this question was able to match string and spin

chain actions in a LCL up to quadratic level in fermions [20, 17, 19]. Roughly speaking, on

the string side, κ-gauge fixed equations of motion for fermions typically come as 2n first

order equations. From these one obtains n second-order equations for n by ’integrating out’

half of the fermions. Taking a non-relativistic limit on the worldsheet one ends up with

equations which are first order in τ and second order in σ which can be matched with the

corresponding LL equations obtained from the spin chain side. Matching the terms quartic

and higher in the fermions had so far not been achieved, though it is expected that this

should be possible given the results of [9]. However, finding a suitable κ-gauge in which

this matching could be done in a natural way remained an obstacle. Below we propose a κ

gauge which appears to be natural from the point of view of the dual spin-chain and allows

for a matching of higher order fermionic terms in the dual Lagrangians.

In this paper we first present a compact way of writing LL sigma models for quite gen-

eral (super-)cosets G/H; in particular we write down the full PSU(2, 2|4)/PS(U(2|2)2) LL

sigma model which arrises as the thermodynamic limit of the one-loop dilatation operator

for the full N = 4 SYM theory. This generalises earlier work by [11], and allows one to

write down LL-type actions without having to go through the coherent-state [12] thermo-

dynamic limit of the spin chain. We then identify a number of sub-sectors of the classical

GS action1 all of which have two real bosonic degrees of freedom and a larger number of

fermionic degrees of freedom (specifically 4,8 and 16 real fermionic d.o.f.s2). Finally, we

define a LCL in which the GS actions for these fermionic sub-sectors reduce to correspond-

ing LL actions. In this way we match the complete Lagrangians for these sub-sectors and

not just the terms quadratic in fermions. Since the largest of these sectors contains the

maximal number of fermions (sixteen) for a κ-fixed GS action the LCL matching to a LL

model gives a clear indication of what the natural κ-gauge is from the point of view of the

dual spin-chain.

The fermionic sub-sectors of the GS action that we find are quite interesting in them-

selves because on-shell κ-symmetry acts trivially on them - in particular the sub-sector

containing 16 fermionic degrees of freedom contains the same number of fermions as the

κ-fixed GS superstring on AdS5 ×S5. Since κ-symmetry acts trivially in this case one can-

not use it to eliminate half of the fermions as one does in more conventional GS actions.

Further, these fermionic sub-sectors naturally inherit the classical integrability of the full

GS superstring on AdS5×S5 found in [21]. Integrating out the metric and the two bosonic

1By a sub-sector we mean that the classical equations of motion for the full GS superstring on AdS5×S5

admit a truncation in which all other fields are set to zero in a manner which is consistent with their equations

of motion. This is quite familiar in two cases: (i) when one sets all fermions in the GS action to zero and,

(ii) when one further restricts the bosons to lie on some AdSp × Sq sub-space (1 ≥ p , , q ≥ 5).
2The 4 fermion model was previously postulated to be a sub-sector of the classical GS action in [29] and

represents a starting point for our analysis.
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degrees of freedom one then arrives at a new class of integrable differential equations for

fermions only.

This paper is organised as follows. In section 2 we give a prescription for constructing

a LL sigma model on a general coset G/H. We also present a number of explicit exam-

ples of LL sigma models most relevant to the gauge/string correspondence there and in

appendix A. In section 3 we identify the fermionic sub-sectors of the GS superstring on

AdS5×S5. In section 4 we define a LCL in which the GS action of the fermionic sub-sectors

reduces, to leading order in J , to the LL sigma models for the corresponding gauge-theory

fermionic sub-sectors. Since the GS action for the four fermion subsector is quadratic in

the remaining appendices to this paper we present a more detailed discussion of it includ-

ing a light-cone quantisation in appendix B, a discussion of its conformal invariance in

appendix C and a T-dual form of the action in appendix E.

2. Landau-Lifshitz sigma models

In this section we construct the Lagrangian for a Landau-Lifshitz (LL) sigma model on a

coset G/H.3 The Lagrangian will typically be first (second) order in the worldsheet time

(space) coordinate, and so is non-relativistic on the worldsheet. We refer to such models

as LL sigma models because in the case of G/H = SU(2)/U(1) the equations of motion

reduce to the usual LL equation

∂τni = εijknj∂
2
σnk , where nini = 1 . (2.1)

The construction of LL Lagrangians is closely related to coherent states |ω,Λ〉. Recall4

that to construct a coherent state |ω ,Λ〉 we need to specify a unitary irreducible repre-

sentation Λ of G acting on a Hilbert space VΛ and a vacuum state |0〉 on which H is a

maximal stability sub-group, in other words for any h ∈ H

Λ(h) |0〉 = eiφ(h) |0〉 , (2.2)

with φ(h) ∈ R. Given such a representation Λ and state |0〉 we define the operator Ω as

Ω ≡ |0〉 〈0| . (2.3)

The LL sigma model Lagrangian on G/H is defined as

LLL G/H = LWZ
LL G/H + Lkin

LL G/H (2.4)

where

LWZ
LL G/H = −iTr

(

Ωg†∂τg
)

, (2.5)

Lkin
LL G/H = Tr

(

g†Dσgg†Dσg
)

. (2.6)

3For earlier work on this see [11].
4For a detailed exposition of coherent states see [12]; a brief summary, using the same notation as in

this paper, is also presented in appendix A of [18].
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Above, g†Dσg ≡ g†∂σg− g†∂σg|H is just the standard H-covariant current. It is then clear

that Lkin
LL G/H is invariant under gauge transformations

g → gh , (2.7)

for any h = h(τ , σ) ∈ H. We may also show that the same is true of LWZ
LL G/H. To see this

note that the gauge variation of LWZ
LL G/H, using equation (2.2), is given by

δHLWZ
LL G/H = e−iφ(h) 〈0| ∂τh |0〉 = e−iφ(h)∂τ (〈0| h |0〉) = i∂τφ(h) . (2.8)

This in turn is a total derivative; and so the full action is invariant under local right H

action. The Lagrangian also has a global G symmetry

g → g0g , (2.9)

for any g0 ∈ G with ∂τg0 = ∂σg0 = 0, and the corresponding Nöther current is given by

(jτ , jσ) = (gΩg†, 2iDσgg†) . (2.10)

In [18, 19] LL actions were written down in terms of Lie algebra matrices denoted

typically by N . To make contact with the present notation we note that5

N ≡ gΩg† − 1

n
In , (2.11)

where the second term on the right hand side is included since N is traceless. Finally, let

us note that these LL sigma models admit a Lax pair representation and as a result are

integrable. This is most easily seen in terms of the matrix N for which the equations of

motion are the LL matrix equation

∂τN =
i

2

[

N , ∂2
σN

}

. (2.12)

This is equivalent to the zero-curvature condition on the following Lax pair

L −→ ∂σ − iN

4πx
, (2.13)

M −→ ∂τ − iN

4π2x2
− [N, ∂σN}

8πx
, (2.14)

where [· , ·} is the (super)-commutator. In the remainder of this section we construct

a number of explicit examples of LL sigma models. Further examples of interest in the

gauge/string correspondence are relagated to appendix A. The reader who is not interested

in the details of these examples should skip the remainder of this section.

2.1 The U(1|1)/U(1)2 model

This is one of the simplest LL sigma models,6 in that the Lagrangian is quadratic

LLL U(1|1)/U(1)2 = iψ̄∂τψ + ∂σψ̄∂σψ , (2.15)

with ψ a complex Grassmann-odd field and ψ̄ its complex conjugate. Notice that this

result can be obtained using the explicit 2 × 2 supermatrix representation of U(1|1), with

the vacuum state |0〉 being the super-vector (0, 1).

5The following equation is due to Charles Young.
6There is also the equally simple bosonic U(1) LL sigma model.
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2.2 The SU(3)/S(U(2) × U(1) model

Before proceeding to our main example - the PSU(2, 2|4) model - in this subsection we

show how the above formal prescription applies to the well known SU(3) Landau-Lifshitz

model [18, 16]. Recall that the Lagrangian for this is

LSU(3)/S(U(2) × U(1)) = −iU i∂τUi −
1

2
|DσUi|2 + Λ(UiU

i − 1) , (2.16)

where

DµUi ≡ ∂µ − iCµ , Cµ = −iU i∂µUi , (2.17)

for µ = τ, σ and U i ≡ U∗
i . To show that we can obtain this from our general expression (2.4)

we write elements of the group SU(3) as 3× 3 matrix g, split into a 3 × 2 matrix X and a

vector Y

g = (X,Y ) , (2.18)

and because g is in SU(3) (i.e. g†g = 1) we have

X†X = 12 , Y †Y = 11 , X†Y = 0 , Y †X = 0 , (2.19)

XX† + Y Y † = 13 . (2.20)

The kinetic part of the Lagrangian (2.4) is then given by

Lkin SU(3)/S(U(2) × U(1)) =
1

4
Tr

(

(g−1D1g)(g−1D1g)
)

=
1

4
Tr





(

X†D1X X†D1Y

Y †D1X Y †D1Y

)2


 =
1

4
Tr





(

0 X†∂1Y

Y †∂1X 0

)2




=
1

2
Tr

[

X†∂1Y Y †∂1X
]

= −1

2
Tr

[

∂1X
†Y Y †∂1X

]

= −1

2
Tr

[

∂1Y
†XX†∂1Y

]

=
1

2
− Tr

[

∂1X
†(1 − XX†)∂1X

]

= −1

2
∂1Y

i(δj
i − YiY

j)∂1Yj

= −1

2
Tr

[

D̄1X
†D1X

]

= −1

2
D̄1Y

iD1Yi . (2.21)

The final expression is the same as the kinetic term of the usual SU(3) Landau-Lifshitz

Lagrangian (2.16) upon identifying Yi with Ui (above Y i ≡ Y †). Above, we have defined

D1Yi = ∂1Yi − YiY
j∂1Yj , D̄1Y

i ≡ (D1Yi)
† (2.22)

D1X = ∂1X − XX†∂1X , D̄1X ≡ (D1X)† . (2.23)

The WZ term of the Lagrangian is given by equation (2.5) and can be written as

LWZ SU(3)/S(U(2) × U(1)) = iTr(X†∂0X) = −iY i∂0Yi . (2.24)

This follows from the fact that g−1∂0g is traceless and so

Tr(X†∂0X) = −Y i∂0Yi . (2.25)

– 6 –
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Upon identifying Yi with Ui, the WZ term above is the same as the usual SU(3) Landau-

Lifshitz one (2.16). Notice that we have also given an alternate parametrisation of the

SU(3) Landau-Lifshitz model in terms of X

LSU(3)/S(U(2) × U(1)) = iTr(X†∂0X) − 1

2
Tr

[

D̄1X
†D1X

]

+ Λ(X†X − 12) , (2.26)

which has an explicit SU(2) gauge invariance.

Finally, out of X and Y we may define a matrix which takes values in the SU(3) Lie

algebra

N i
j = 3Y iYj − δi

j = −3XjaX
ai + 2δi

j , (2.27)

where a = 1, 2. This matrix is however, not a general SU(3) matrix but rather satisfies the

identity

N2 = N + 2 . (2.28)

In terms of N the equations of motion take the form of the matrix Landau-Lifshitz equation

∂0N = − i

9
[N , ∂2

1N ] . (2.29)

These are equivalent to the consistency of the following linear problem

Lψ =

[

∂σ − i

4πx
N

]

ψ = 0 , (2.30)

Mψ =

[

∂τ − i

4π2x2
N − b

4πx
[N, ∂1N ]

]

ψ = 0 . (2.31)

2.3 The SU(2, 2|4)/S(U(2|2) × U(2|2)) model

In this sub-section we present an explicit Lagrangian for the complete PSU(2, 2|4) Landau-

Lifshitz sigma model Lagrangian following the general discussion at the start of the present

section. The action we are interested in is the Landau Lifshitz model as defined in equa-

tion (2.4) on the coset
PSU(2, 2|4)

PS(U(2|2) × U(2|2)) , (2.32)

or on the coset
SU(2, 2|4)

S(U(2|2) × U(2|2)) , (2.33)

both of which have 32 real components. The derivation is very similar to the SU(3) La-

grangian derived in the previous sub-section, and so we will simply state our results. A

general group element g can be written as (X,Y ) where now X (Y ) is a 8 × 4 superma-

trix, with the diagonal 4 × 4 blocks bosonic (fermionic) and the off-diagonal 4 × 4 blocks

fermionic (bosonic). The Lagrangian is then given by

LLL PSU(2, 2|4)/PS(U(2|2) × U(2|2)) = iSTr(X†∂0X)−1

2
STr(D̄1X

†D1X)+Λ(X†X−1) . (2.34)

Note that there are 32 complex degrees of freedom in X, which the constraints reduce to

48 real degrees of freedom. The action also has a local U(2|2) gauge invariance, so in total

the above Lagrangian has 32 degrees of freedom - the same as the coset.

– 7 –
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In fact we may write X as

X = (Ũa, Ṽa, Ua, Va) , X† ≡ (Ũa, Ṽ a, Ua, V a) , (2.35)

where a = 1, . . . , 8, and

ŨaŨa = −1 , Ṽ aṼa = −1 , Ṽ aŨa = 0 , ŨaṼa = 0 , (2.36)

UaUa = 1 , V aVa = 1 , V aUa = 0 , UaVa = 0 , (2.37)

UaŨa = 0 , UaṼa = 0 , V aŨa = 0 , V aṼa = 0 , (2.38)

ŨaUa = 0 , ŨaVa = 0 , Ṽ aUa = 0 , Ṽ aVa = 0 . (2.39)

Above we have defined

Ua = U∗
b Cba , V a = V ∗

b Cba , Ũa = −Ũ∗
b Cba , Ṽ a = −Ṽ ∗

b Cba , (2.40)

where Cab = diag(−1,−1, 1, 1, 1, 1, 1, 1).

The Lagrangian (2.41) written in terms of Ũa, Ṽa, Ua, Va is

LLL PSU(2, 2|4)/PS(U(2|2)2) = −iŨa∂0Ũa − iṼ a∂0Ṽa − iUa∂0Ua − iV a∂0Va

−1

2

(

∂1Ũ
a∂1Ũa + ∂1Ṽ

a∂1Ṽa + ∂1U
a∂1Ua + ∂1V

a∂1Va

−Ũa∂1ŨaŨ
b∂1Ũb − Ṽ a∂1ṼaṼ

b∂1Ṽb

+V a∂1VaV
b∂1Vb + Ua∂1UaU

b∂1Ub

+2V a∂1UaU
b∂1Vb − 2Ṽ a∂1ŨaŨ

b∂1Ṽb + 2Ũa∂1UaU
b∂1Ũb

+2Ũa∂1VaV
b∂1Ũb + 2Ṽ a∂1UaU

b∂1Ṽb + 2Ṽ a∂1VaV
b∂1Ṽb

)

. (2.41)

One can check explicitly that this action has local U(2|2) invariance

(Ũa, Ṽa, Ua, Va) → (Ũa, Ṽa, Ua, Va)U(τ, σ) , (2.42)

for U a U(2|2) matrix.

2.3.1 Subsectors of the the SU(2, 2|4)/S(U(2|2) × U(2|2)) model

In the above Lagrangian we may set

Ũa = (1, 07) , Ṽa = (0, 1, 06) , Ua = (02, U3, . . . , U8) , Va = (02, V3, . . . , V8) ,

(2.43)

where

UaUa = 1 , V aVa = 1 , V aUa = 0 , UaVa = 0 . (2.44)

The resulting Lagrangian is that of the SU(2|4) sector. If we further set

0 = U3 = U4 = V3 = V4 , (2.45)

– 8 –
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we can recover the SO(6) Lagrangian ([18]). Details of this are presented in appendix B.

We may further consistently set

0 = U8 = V3 = V4 = V5 = V6 = V7 , V8 = 1 , (2.46)

in which case we obtain the SU(2|3) Lagrangian ([19]), with the identification (U3, U4) ≡
(ψ1, ψ2).

We may instead set

Ua = (07, 1) , Va = (06, 1, 0) , Ũa = (U1, . . . , U6, 0
2) , Ṽa = (V1, . . . , V6, 0

2) ,

(2.47)

where

ŨaŨa = −1 , Ṽ aṼa = −1 , Ṽ aŨa = 0 , ŨaṼa = 0 . (2.48)

The resulting Lagrangian is that of the SU(2,2|2) sector. If we further set

0 = U3 = U4 = V3 = V4 , (2.49)

we recover the SO(2,4) Lagrangian, which is the Wick rotated version of the SO(6) La-

grangian ([18]). In appendix B we write out this Lagrangian explicitly.

A final interesting choice is to set

Ua = (07, 1) , Va = (0, V2, . . . , V7, 0) , Ũa = (0, U2, . . . , U7, 0) , Ṽa = (1, 07) ,

(2.50)

where

ŨaŨa = −1 , V aVa = 1 , V aŨa = 0 , ŨaVa = 0 . (2.51)

The resulting Lagrangian is that of the SU(1,2|3) sector. If we further set

0 = V2 = V7 = Ũ2 = Ũ7 , (2.52)

we get the SU(2|2) Lagrangian. In appendix B we write out this Lagrangian explicitly.

3. Green-Schwarz actions and fake κ-symmetry

in this section we construct GS sigma model actions whose field content are two real

bosons and 4,8 or 16 real fermions. These models all come from consistent truncations of

the equations of motion for the full Type IIB GS action on AdS5 × S5.7 Just as any GS

sigma model these fermionic actions have a κ-symmetry. However, we show that for these

models κ-symmetry is trivial on-shell. As a result one cannot use it to reduce the fermionic

degrees of freedom of these models by fixing a κ-gauge as one does in more conventional

GS actions.

Let us briefly recall the construction of the GS action on a super-coset G/H. We require

that: (i) H be bosonic and, (ii) G admit a ZZ4 automorphism that leaves H invariant, acts

7Other truncations including non-zero fermions were found in [22, 19] in the Metsaev-Tseytlin κ-gauge.

The truncations considered in this section are found without fixing κ-symmetry.
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by −1 on the remaining bosonic part of G/H, and by ±i on the fermionic part of G/H.

The currents jµ = g†∂µg can then be decomposed as

jµ = j(0)
µ + j(1)

µ + j(2)
µ + j(3)

µ , (3.1)

where j(k) has eigenvalue ik under the ZZ4 automorphism. In terms of these the GS action

can be written as

LGS G/H =

∫

d2σ
√−ggµνStr(j(2)

µ j(2)
ν ) + ǫµνStr(j(1)

µ j(3)
ν ) , (3.2)

from which the equations of motion are

0 = ∂α(
√−ggαβj

(2)
β ) −√−ggαβ

[

j(0)
α , j

(2)
β

]

+
1

2
ǫαβ

([

j(1)
α , j

(1)
β

]

−
[

j(3)
α , j

(3)
β

])

, (3.3)

0 =
(√−ggαβ + ǫαβ

) [

j(3)
α , j

(2)
β

]

, (3.4)

0 =
(√−ggαβ − ǫαβ

) [

j(1)
α , j

(2)
β

]

. (3.5)

3.1 Fermionic GS actions

Having briefly reviewed the general construction of GS actions on G/H super-cosets, we

now turn to the main focus of this section which is identifying GS actions with a large

number of fermionic degrees of freedom, which are consistent truncations of the full AdS5×
S5 GS action. To do this consider the following sequence of super-cosets

U(1|1) × U(1|1)
U(1) × U(1)

⊂ U(2|2)
SU(2) × SU(2)

⊂ PS(U(1, 1|2) × U(2|2))
SU(1, 1) × SU(2)3

⊂ PSU(2, 2|4)
SO(1, 4) × SO(5)

.

(3.6)

The ⊂ symbols are valid both for the numerators and denominators and hence for the

cosets as written above. Notice that the right-most of these cosets is just the usual Type

IIB on AdS5 ×S5 super-coset. Further, it is easy to convince onself that each of the cosets

above admits a ZZ4 automorphism which is compatible with the ZZ4 automorphism of the

Type IIB on AdS5 × S5 super-coset. The ZZ4 automorphisms may be used to write down

GS actions for each of these cosets. The fact that the cosets embed into each other as

shown above in a manner compatible with the ZZ4 automorphism implies that their GS

actions can be thought of as coming from a consistent truncation of the GS action of any

coset to the right of it in the above sequence. In particular this reasoning shows that the

GS actions for U(1|1)2/U(1)2, U(2|2)/SU(2)2 and U(1, 1|2) × U(2|2)/(SU(1, 1) × SU(2)3

can all be thought of as coming from consistent truncations of the Type IIB GS action on

AdS5 × S5.

Counting the number of bosonic and fermionic components of the three cosets

U(1|1)2/U(1)2, U(2|2)/SU(2)2 and U(1, 1|2) × U(2|2)/(SU(1, 1) × SU(2)3 we see imme-

diately that they each have 2 real bosonic components and, respectively, 4,8 and 16 real

fermionic components - which is why we refer to these actions as fermionic GS actions. We

might expect that some of the femrionic degrees of freedom could be eliminated from the

GS actions by fixing κ-symmetry. In fact, it turns out that for these models κ-symmetry

acts trivially on-shell and so cannot be used to eliminate some of the fermionic degrees of
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freedom. Indeed, the GS actions on the above-mentioned cosets do have 4,8 and 16 real

fermionic degrees of freedom, respectively.

In the remainder of this sub-section we write down explicitly the GS actions for

U(2|2)/SU(2)2 and U(1|1)2/U(1)2 and discuss their κ and gauge transformations; the

GS action for U(1, 1|2) ×U(2|2)/SU(1, 1) × SU(2)3 may also be written down in an anal-

ogous fashion but since we will not need its explicit form later we refrain from writing it

out in full.

3.2 The GS action on U(2|2)/SU(2)2

The GS action on action on U(2|2)/SU(2)2 can be written down in terms of the parametri-

sation of the U(2|2) supergroup-valued matrix written as

g = (X,Y ; X̃, Ỹ ) , (3.7)

where X, Y (X̃ , Ỹ ) are four-component super-vectors with the first (last) two entries

Grassmann even and the last (first) two entries Grassmann odd. Since the matrix g is

unitary we must have

1 = X†X = Y †Y = X̃†X̃ = Ỹ †Ỹ ,

0 = X†Y = Y †X = X†X̃ = X̃†X = X†Ỹ = Ỹ †X

= Y †X̃ = X̃†Y = Y †Ỹ = Ỹ †Y = X̃†Ỹ = Ỹ †X̃ ,

1(2|2) = XX† + Y Y † + X̃X̃† + Ỹ Ỹ † , (3.8)

where the matrix 1(2|2) is just the 4× 4 identity matrix. The ZZ4 automorphism is given by

Ω : M =

(

A B

C D

)

−→
(

σ2 0

0 σ2

)(

−AT CT

−BT −DT

) (

σ2 0

0 σ2

)

, (3.9)

which acts on the current as

Ω(jµ) =











−Y †∂µY X†∂µY −Ỹ †∂µY X̃†∂µY

Y †∂µX −X†∂µX Ỹ †∂µX −X̃†∂µX

Y †∂µỸ −X†∂µỸ −Ỹ †∂µỸ X̃†∂µỸ

−Y †∂µX̃ X†∂µX̃ Ỹ †∂µX̃ −X̃†∂µX̃











. (3.10)

The Green-Schwarz action then is

LGS U(2|2)/(SU(2)×SU(2)) =
1

2

∫

d2σ
√

ggµν
(

(X†∂µX + Y †∂µY )(X†∂νX + Y †∂νY )

−(X̃†∂µX̃ + Ỹ †∂µỸ )(X̃†∂νX̃ + Ỹ †∂ν Ỹ )
)

+2iǫµν
(

X†∂µX̃Y †∂ν Ỹ + Ỹ †∂µY X̃†∂νX

−X†∂µỸ Y †∂νX̃ − X̃†∂µY Ỹ †∂νX
)

. (3.11)
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One can easily check that this action has a local SU(2) × SU(2) invariance which acts on

the doublets (X,Y ) and (X̃, Ỹ ). The action also has κ-symmetry which acts on the fields

as8

δκX = −X̃(ǭ1 + ¯̃ǫ1) − Ỹ (ǭ2 + ¯̃ǫ2)

δκY = iX̃(ǫ2 − ǫ̃2) − iỸ (ǫ1 − ǫ̃1)

δκX̃ = X(ǫ1 + ǫ̃1) + iY (ǭ2 − ¯̃ǫ2)

δκỸ = X(ǫ2 + ǫ̃2) − iY (ǭ1 − ¯̃ǫ1) , (3.12)

where

ǫi = Παβ
+ (X†∂αX + Y †∂αY + X̃†∂αX̃ + Ỹ †∂αỸ )κi , β

ǫ̃i = Παβ
− (X†∂αX + Y †∂αY + X̃†∂αX̃ + Ỹ †∂αỸ )κ̃i , β , (3.13)

for i = 1 , 2 with κi , β and κ̃i , β local Grassmann-odd parameters. The world-sheet metric

also varies as

δκ(
√−ggαβ) = Παγ

+

(

κβ
1,+(X̃†∂γX − iY †∂γ Ỹ )+κβ

2,+(Ỹ †∂γX+iY †∂γX̃) + c.c.
)

+α↔β

+Παγ
−

(

κ̃β
1,−(X̃†∂γX + iY †∂γ Ỹ )+κ̃β

2,−(Ỹ †∂γX−iY †∂γX̃)+c.c.
)

+α↔β .

(3.14)

Notice that the above variation is consistent with the symmetries and the unimodularity

of
√−ggαβ as long as

κα
i = Παβ

+ κi , β , κ̃α
i = Παβ

− κ̃i , β . (3.15)

In the above formulas we have decomposed two-component vectors vα as

vα
± ≡ Παβ

± vβ ≡ 1

2

(√−ggαβ ± ǫαβ
)

vβ . (3.16)

3.3 The GS action on U(1|1)2/U(1)2

To obtain the GS action on U(1|1)2/U(1)2 we may simply set

0 = X3 = Y4 = X̃1 = Ỹ2 . (3.17)

in the action (3.11). This is because now the group element g given in equation (3.7)

belongs to U(1|1)2 ⊂ U(2|2); this truncation is also consistent with the ZZ4 automor-

phism (3.9). As was argued at the start of this sub-section these facts imply that setting

the above components to zero is a consistent truncation of the equations of motion for the

8The κ-action below has the nice feature of acting as a local fermionic group action by multiplication

from the right. Such a representation was originally suggested in [27] and was developed more fully for the

AdS5 × S5 GS action in [28]; the formulas below are a simple extension of this latter construction to the

coset at hand.
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action (3.11). The GS action for the truncated theory then is

LGS U(1|1)2/U(1)2 =
1

2

∫

d2σ
√

ggµν
(

(X†∂µX + Y †∂µY )(X†∂νX + Y †∂νY )

−(X̃†∂µX̃ + Ỹ †∂µỸ )(X̃†∂νX̃ + Ỹ †∂ν Ỹ )
)

−2iǫµν
(

X†∂µỸ Y †∂νX̃ + X̃†∂µY Ỹ †∂νX
)

. (3.18)

It has two U(1) gauge invariances

X → eiθ1X , Y → eiθ1Y , (3.19)

X̃ → eiθ2X̃ , Ỹ → eiθ2 Ỹ , (3.20)

as well as κ-symmetry which is simply the restriction of equations (3.12) and (3.14).

If we parametrise the group element g = (X,Y, X̃, Ỹ ) ∈ U(1|1)2 by

X =

(

eit/2

(

1+
1

2
ψ2

)

, 0, 0,−e−iα/2ψ̄

)

, Y =

(

0, eit/2

(

1 +
1

2
η2

)

,−e−iα/2η̄, 0

)

, (3.21)

X̃ =

(

0, eit/2η, e−iα/2

(

1 − 1

2
η2

)

, 0

)

, Ỹ =

(

eit/2ψ, 0, 0, e−iα/2

(

1 − 1

2
ψ2

))

, (3.22)

where ψ2 ≡ ψ̄ψ and η2 ≡ η̄η, the action (3.18) becomes

LGS U(1|1)2/U(1)2 =

∫

d2σ
√

ggµν
(

−∂µφ+∂νφ− + i∂µφ+ηi
←→
∂ν ηi − ∂µφ+∂νφ+ηiηi

)

−ǫµν∂µφ+(η1
←→
∂ν η2 − η1←→∂ν η2) , (3.23)

This action was postulated in [29] to be a consistent truncation of the full Type IIB GS

action on AdS5 × S5, by checking the absense of certain cubic terms in the latter action,

using an explicit non-unitary representation for PSU(2, 2|4). Here we have shown that

on group-theoretic grounds this action is indeed such a consistent truncation, and have

obtained its form using a unitary representation of the group.

On the local coordinates defined above κ-symmetry acts as

δηi = ǫi , δt = −δα = i
(

ηiǫi + ηiǫ
i
)

. (3.24)

In particular notice that δφ+ = 0. The parameters ǫi are not however free, instead they

are given by

ǫj =
i

2

(

ηi
←→
∂αηi + i∂αφ− + iηiηi∂αφ+

)

κα
j . (3.25)

Above κα
i are complex-valued Grassmann functions of the world-sheet; their complex con-

jugates are denoted by κα i. We will also require that the metric vary under κ-symmetry
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as

δ(
√−ggαβ) = − i

2

[

κ(αP
β)γ
+ (−η1∂γφ+ − iη2∂γφ+ + 2i∂γη1 + 2∂γη2)

+κ̄(αP
β)γ
+ (−η1∂γφ+ + iη2∂γφ+ − 2i∂γη1 + 2∂γη2)

+κ̃(αP
β)γ
− (η1∂γφ+ − iη2∂γφ+ − 2i∂γη1 + 2∂γη2)

+¯̃κ
(α

P
β)γ
− (η1∂γφ+ + iη2∂γφ+ + 2i∂γη1 + 2∂γη2)

]

= − i

2

[√−ggαγ

(

κβ i∂γηi + κβ
i ∂γηi +

i

2
∂γφ+(κβ iηi − κβ

i ηi)

)

+iǫαγ
(

κβ
1∂γη2 + κβ

2∂γη1 − κβ 1∂γη2 − κβ 2∂γη1
)

−1

2
ǫαγ∂γφ+

(

κβ
1η2 + κβ

2η1 + κβ 1η2 + κβ 2η1
)

]

. (3.26)

where a(αbβ) = aαbβ + aβbα and

κα
1 =

i

2
(¯̃κ

α − κ̄α) , κα
2 =

1

2
(κ̃α + κα) , (3.27)

with the complex conjugates defined as κ† ≡ κ̄ and κ̃† ≡ ¯̃κ. The above variation of the

metric is symmetric and since
√−ggαβ has unit determinant (is uni-modular) we require

that

κα = Pαβ
+ κβ , κ̃α = Pαβ

− κ̃β . (3.28)

Using the above formulas one can check that the action (3.23) is indeed invariant under

this symmetry. However, as we show below this local symmetry is trivial on-shell.

3.4 Fake κ-symmetry

In this sub-section we show that κ-symmetry acts trivially on-shell on the fermionic GS

actions studied in this section. To see this most easily we will first consider the particle

limit (in other words we remove all σ dependence of fields) for the action LGS U(1|1)2/U(1)2 .

This gives

Lparticle = −
∫

dτe−1φ̇+

(

φ̇− + φ̇+ηiηi − iηiη̇
i − iηiη̇i

)

= −
∫

dτe−1φ̇+a , (3.29)

where for convenience we have defined9

a =
(

φ̇− + φ̇+ηiηi − iηiη̇
i − iηiη̇i

)

. (3.30)

Setting e = constant, we may solve the the φ+, φ− and ηi equations of motion to get

φ+ = 2κτ , φ− = λτ , ηi = e−iκτη0 i , (3.31)

9As an aside note that the fermion index i can now run over any number and is not restricted to i = 1, 2

as is the case for the super-string. This is quite typical of κ-invariant particle actions.
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where κ, λ (respectively, η0 i) are complex constant Grassmann-even (odd) numbers.10

Finally, we turn to the equation for the einbein e which reduces to

κλ = 0 . (3.32)

or in other words forces us to set either κ or λ to zero. As a result the theory consists of

two sectors, one with κ = 0 and the other with λ = 0. The former sector is trivial and

uninteresting as all fields apart from φ− are constant and the energy is zero. The physically

more relevant sector has λ = 0 and κ 6= 0.

Let us now turn to the κ invariance of the action (3.29). It is easy to see that this

action is invariant under

δφ+ = 0 , δηi = aκi , δφ− = ia(ηiκi + ηiκ
i) ,

δ(e−1) = 2i(η̇iκi + η̇iκ
i) + φ̇+(ηiκi + ηiκ

i) , (3.33)

where κi are arbitrary Grassmann-odd functions of τ . Since we are free to pick the param-

eters κi one might think that we could simply gauge away the femrionic degrees of freedom

using this symmetry; had the κ variations been of the form

δηi = κi ,

we would have been able to gauge away the fermions. In fact this is not the case: the κ

variation of the fermions instead reads

δηi = aκi , (3.34)

From the equation for the einbein e we see that in fact a = 0 (in the physically important

sector for which κ 6= 0 as discussed above) and so on-shell the above κ symmetry acts

trivially on all fields except the einbein itself. But any κ variation of the einbein e can be

compensated for by a diffeomorphism. We conclude that while the actions (3.29) and (3.18)

formally have a κ-symmetry, this has a trivial action on-shell and so cannot be used to

eliminate any fermions.

The argument in the above paragraph relies on the fact that on fermions κ-symmetry

was acting as δηi = aκi and on-shell a = 0. Returing to the fermionic GS superstring

actions discussed in this section we see from equation (3.13) that here too κ-symmetry acts

as δηi = astringκi, where now

astring = (X†∂αX + Y †∂αY + X̃†∂αX̃ + Ỹ †∂αỸ ) . (3.35)

It is easy to check that because of the Virasoro constrains astring is also zero on-shell. We

conclude that the κ-symmetry of the action (3.23) is trivial on-shell and so cannot be used

to eliminate any fermions.

10In the above solution we have, without loss of generality, set the constant parts of φ+ and φ− to zero.
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4. Large charge limits of fermionic GS actions

Given a ZZ4 automorphism on some coset G/H we may construct a Green-Schwarz La-

grangian for it (3.2). On general grounds the large charge limit of this Lagrangian should

be a generalised Landau Lifshitz sigma model. Further, since we expect the global charges

of the two actions to map onto one another, this LL sigma model should be constructed

on a coset G/H̃ . In this section we will attempt to identify H̃.

One step in this direction is to count the number of degrees of freedom that the GS

action has and compare it with that of the LL model. For example in the case of the Type

IIB superstirng on AdS5 × S5 there are 10 real bosonic degrees of freedom, and there are

32/2 = 16 fermionic degrees of freedom (where the factor of 1/2 comes from κ symmetry).

In the large charge limit two of the bosonic degrees of freedom are eliminated; the remaining

eight are ’doubled’ since the LL Lagrangian should be thought of as a Lagrangian on phase

space. The 16 fermions are described by coupled first order equations. When taking the

LCL we integrate out half of the fermions, in order to arrive at second order equations [19],

leaving us with 8 real fermionic degrees freedom; as in the case of the bosons this should

also be ’doubled’, leaving us with 16 fermionic degrees of freedom. At this point we may

simply guess what H̃ is in the case of G = PSU(2, 2|4), since the only coset of the form

G/H̃ with 16 bosonic and fermionic degrees of freedom each is

H̃ = PS(U(1, 1|2) × U(2|2)) , (4.1)

though of course in this case H̃ is well known from gauge theory.

Let us persue this counting argument further and consider the GS action on

U(1|1)2
U(1)2

. (4.2)

This is a sub-sector of the classical GS string action on AdS5 × S5. It has 2 real bosonic

degrees of freedom and 4 real fermionic degrees of freedom. As was shown in section 3.4,

κ-symmetry in this case is trivial on-shell, and so, following the counting argument in the

previous paragraph,11 we expect the LL sigma model corresponding to the LCL of this GS

action to have 4 real fermionic degrees of freedom and no bosonic degrees of freedom. The

only such coset is

U(1|1)2
U(1)4

, (4.3)

in other words H̃ = U(1)4.

11For the bosons we subtract two real degrees of freedom in the LCL and double the remaining ones. In

the present case this gives 2×(2−2) = 0 d.o.f. For the fermions, the number of d.o.f. in the LL sigma model

should be the same as that of the GS string once κ-symmetry is fixed. This is because, once κ-symmetry

is fixed, we halve the number of d.o.f. since the GS action gives first order differential equations, and the

LL action gives second order differential equations; we then double it because the LL action is an action on

phase space. In the present case, since κ-symmetry is trivial on-shell we end up with 2× 4/2 = 4 fermionic

d.o.f.
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Similarily, we may consider the bigger sub-sector of the full classical superstring on

AdS5 × S5

U(2|2)
SU(2)2

, (4.4)

for which κ-symmetry is also trivial on-shell. This sub-sector has 2 bosonic and 8 fermionic

d.o.f. As a result we expect the LL sigma-model to have no bosonic d.o.f. and 8 fermionic

d.o.f. Again this is enough for us to identify

U(2|2)
U(2)2

, (4.5)

as the coset on which the LL sigma model is constructed. Finally, the largest classical

sub-sector of the GS string action on AdS5 × S5 for which κ-symmetry is trivial is the GS

action on
PS(U(1, 1|2) × U(2|2))

SU(1, 1) × SU(2)3
. (4.6)

By our counting argument the corresponding LCL coset should have 16 fermionic and no

bosonic d.o.f. As a result, the LL sigma model which corresponds to the LCL limit of the

GS action on (U(1, 1|2) × U(2|2))/SU(1, 1) × SU(2)3 is constructed over the coset

PS(U(1, 1|2) × U(2|2))
U(1, 1) × U(2)3

. (4.7)

While this counting argument shows how to identify H̃, it is not very clear how the

LCL should be taken in practice and in particular how starting from a GS action one

arrives at a LL action. The rest of this section will address these issues in the three cases

of G = U(1|1)2 , U(2|2) and U(1, 1|2) × U(2|2). We will restrict our discusion to the

leading order term in the LCL and leave the matching of sub-leading terms to a future

publication.

4.1 Matching the U(1|1)2 sub-sectors

In this subsection we will argue that the large charge limit of the Lagrangian given in

equations (3.18) and (3.23) which describes the Green-Schwarz string on the coset

U(1|1)2
U(1)2

, (4.8)

is given by the Landau-Lifshitz Lagrangian on the coset12

U(1|1)2
U(1)4

. (4.9)

We will first arrive at this result in a very pedestrian way. Since general solutions to both

the LL and GS cosets can be given explicitly in full generality we will write them down

using unconstrained coordinates. On the GS side,

φ+ = κτ , (4.10)

12This is somewhat different to the comparison between gauge and string theory done in ([29]) where it

was argued that on the gauge theory side the coset should be U(1|1)/U(1)2.
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the general solution takes the form

η1 =
∞
∑

n=−∞

einσ
(

eiωnτψ+
n + e−iωnτψ−

n

)

, (4.11)

where ψ±
n are constant Grassmann-odd numbers, and

ωn =
√

n2 + κ2/4 . (4.12)

η2 is completely determined via the equation of motion

∂ση2 = i∂τη
1 − κ

2
η1 . (4.13)

In the LCL we take κ → ∞ in which case we have

η1 ∼
∞
∑

n=−∞

einσ
(

ei(κ/2+n2/κ)τψ+
n + e−i(κ/2+n2/κ)τψ−

n

)

= eiκτ/2

[

ψ+
0 +

∞
∑

n=1

ein2τ/κ
(

ψ+
n einσ + ψ+

−ne−inσ
)

]

+e−iκτ/2

[

ψ−
0 +

∞
∑

n=1

e−in2τ/κ
(

ψ−
n einσ + ψ−

−ne−inσ
)

]

≡ eiκτ/2ψ1 LL + e−iκτ/2ψ̄2 LL , (4.14)

where ψ1 LL and ψ2 LL are the 2 complex fermionic d.o.f. for the LL sigma model on (see

equation (2.15))

U(1|1)2
U(1)4

. (4.15)

In particular, after rescaling τ → κτ , they satisfy the equations of motion

0 =
(

∂2
σ − i∂τ

)

ψ1,2 LL . (4.16)

In this way we match, to leading order in the LCL, the classical string Lagrangian with

the corresponding coherent state continuum limit of the gauge theory dilatation operator

in the U(1|1)2 sub-sector.

Notice that physical string solutions have to satisfy the level-matching condition

∫ 2π

0
∂1φ− = 2πm , for m ∈ ZZ . (4.17)

The winding parameter m does not, however, enter the LCL Lagrangian Rather, it gives a

constraint on its solutions. This matches the spin-chain side where m enters as a constraint

on the Bethe roots, but does not enter the algebraic Bethe equations or the LL sigma-model

action. This feature is very similar to the SL(2) sector discussed in [30].
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4.2 Large Charge Limit of fermionic GS actions

In this section we re-phrase the above discussion in terms of the embedding coordinates

X, Y . . . , and the currents j
(k)
µ . This allows for a straightforward generalisation from the

U(1|1)2 sub-sector to the U(2|2) and U(1, 1|2)×U(2|2) sub-sectors. We present the explicit

discussion only for the case of U(2|2), but the other case follows almost trivially.

The first thing to note is that the equation of motion for one of the two bosonic fields,

φ+, is particularily simple in the GS models presently considered. This can be obtained as

the super-trace of equation (3.3). As a result we may set

X†∂µX + Y †∂µY − X̃†∂µX̃ − Ỹ †∂µỸ = iκδµ , ,0 . (4.18)

Using this, in conformal gauge the equation of motion for the off-diagonal component of

the worldsheet metric implies that

X†∂σX + Y †∂σY + X̃†∂σX̃ + Ỹ †∂σỸ = 0 , (4.19)

while the fermionic equations of motion (3.4), (3.5) reduce to13

0 = κ(j(3)
τ − j(3)

σ ) + . . . , 0 = κ(j(1)
τ + j(1)

σ ) + . . . . (4.20)

As a result of these relations the WZ term does not contribute to the bosonic equation of

motion (3.3).14 This fact allows us to check explicitly that the bosonic equations of motion,

together with the ansatz (4.18), are consistent with the equations of motion for the metric

gµν in conformal gauge. In fact these Virasoro constraints then imply that

Dµt = δµ ,0
κ

2
, D̃µα = −δµ ,0

κ

2
. (4.21)

As in the discussion around equation (4.17) above, the level matching condition that follows

from the Virasoro constraints does not enter the LCL action.

Using equations (4.18), (4.19) and (4.20) together with a rescaling τ → κτ we may

re-write the GS Lagrangian in conformal gauge as follows

LGS U(2|2)/ SU(2)2 = ηµνStr(j(2)
µ j(2)

ν ) + ǫµνStr(j(1)
µ j(3)

ν )

= ηµν
(

X†∂µX + Y †∂µY − X̃†∂µX̃ − Ỹ †∂µỸ
)

×
(

X†∂µX + Y †∂µY + X̃†∂µX̃ + Ỹ †∂µỸ
)

−2Str
(

j(1)
σ j(3)

σ

)

= i
(

X†∂τX+Y †∂τY +X̃†∂τ X̃+Ỹ †∂τ Ỹ
)

− STr
(

(j(1)
σ +j(3)

σ )(j(1)
σ +j(3)

σ )
)

= LLL U(2|2)/U(2)2 (4.22)

13In terms of X, Y, X̃, Ỹ this implies that we have relations of the form

X†∂τ Ỹ = iX̃†∂σY , X̃†∂τY = −iX†∂σỸ , etc .

14This is easy to see since the WZ term’s contribution to these equations is proportional to
h

j
(1)
τ , j

(1)
σ

i

−
h

j
(3)
τ , j

(3)
σ

i

. However, since j
(1)
τ = −j

(1)
σ and j

(3)
τ = j

(3)
σ each of these commutators vanishes seperately.
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The right-hand side of the above equation is nothing but the LL sigma model Lagrangian

defined on G/H̃ , where H̃ is fixed under the ZZ2 automorphism which is the square of the

ZZ4 automorphism used in the construction of the GS action. We have thus shown that to

leading order in the LCL the fermionic GS actions constructed in section 3 above reduce to

LL sigma model actions in the manner anticipated by the general argument presented at

the start of the present section. It would be interesting to consider sub-leading corrections

to this LCL for example in a manner similar to [15].

4.3 A gauge-theory inspired κ gauge

The GS sigma model on AdS5×S5 has κ-symmetry. This, as well as other symmetries of the

string action, such as world-sheet diffeomorphisms, are not manifest in the corresponding

spin-chain simply because this latter system keeps track only of the physical degrees of

freedom. One of the challenges of defining a LCL is to identify suitable gauges for these

stringy symmetries in which the physical degrees of freedom are written in the most natural

coordinates for the spin-chain: while all gauges should be in principle equivalent it may

be much more difficult to define a LCL between the two theories if we pick an unnatural

gauge. In the previous sub-section we have defined an LCL which matches all 16 fermionic

degrees of freedom from the GS action to the corresponding LL model in a very natural

way. This strongly suggests what κ-gauge should be used in the full AdS5 × S5 string

action when comparing to gauge theory. Specifically it should be the gauge which keeps

non-zero the 16 fermions of the coset PS(U(1, 1|2) ×U(2|2))/(SU(1, 1) × SU(2)3). In fact

this is the gauge used recently in [31] and the above argument can be interpreted as one

motivation for their κ-gauge choice.

5. Conclusion

Over the last few years our understanding of the gauge/string correspondence has been

greatly improved by using the Large Charge Limit. In this approach, the reciprocal of a

large charge is employed as an expansion parameter that gives a handle on the two sides

of the duality. One may compare the anomalous dimensions of gauge invariant operators

with the energies of corresponding string states - this is done most efficiently by comparing

the string Lagrangian in a suitable LCL with the thermodynamic limit of the spin-chain

Lagrangian used to compute gauge theory anomalous dimensions. In the first part of this

paper we presented a construction of a general Landau-Lifshitz sigma model on a coset

G/H. On general grounds one expects that the energies of states in the LL sigma model

correspond, in the thermodynamic limit, to the anomalous dimensions of the one-loop gauge

theory dilatation operator. We applied this construction to give an explicit Lagrangian for

the thermodynamic limit of the complete one-loop dilatation operator of N = 4 SYM.

Using this construction we matched, for the first time, fermionic parts of the string and

spin-chain Lagrangians beyond the quadratic level. In order to match the LL Lagrangian

with the LCL of the GS string action, we identified a suitable κ-gauge for the GS action

in which the comparison is most natural. While all κ-gauges should in principle be equiv-

alent the presently chosen gauge does not require any complicated field redefinitions when
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matching the fermions in the string and spin-chain Lagrangians, making such a comparison

possible.

The above-mentioned choice of κ-gauge was identified in the following way. The GS

action on AdS5×S5 has, at the level of classical equations of motion, a number of consistent

truncations; these include the well-known truncations to various purely bosonic AdSp ×Sq

subsectors as well as AdSp ×Sp super-string sub-sectors for p = 2, 3. In the present papers

we identified a number of new sub-sectors, whose field content is that of two real bosons

(which one can think of as AdS1 × S1) and 4,8, and 16 real fermions. What is more, we

have shown that on these sub-sectors κ-symmetry acts trivially on-shell, as a result one

is indeed left with 4,8, and 16 physical fermionic degrees of freedom in these sub-sectors,

and the issue of fixing a κ-gauge does not arrise. We then showed how to match in the

LCL these truncated GS Lagrangians, including higher-order fermionic terms, with the

corresponding LL Lagrangian constructed earlier in the paper.

The dual theories have 16 real physical fermionic degrees of freedom which we have

matched with one another in a straightforward way. This allows us to identify the κ-gauge

for the GS action on AdS5 ×S5 most suited to the dual gauge-theory description. Namely,

it is the gauge which keeps those 16 fermions which form the largest of the fermionic sub-

sectors we have identified. We intend to extended this comparison to the complete one-loop

Lagrangians, including higher-order mixed bosonic and fermionic terms in the near future.
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A. Some examples of Landau-Lifshitz sigma models

In this appendix we collect some expressions for a number of relevant Landau-Lifshitz

sigma models.

A.1 The SU(2|3)/S(U(2|2) × U(1)) model

The SU(2|3) sub-sector sigma model Lagrangian is [18]

LLL SU(2|3) = −iU i∂τUi−iψα∂τψa−
1

2
|DσUi|2−

1

2
D̄σψaDσψa+Λ(UiU

i+ψaψ
a−1) , (A.1)

where

Dµ ≡ ∂µ − iCµ , D̄µ ≡ ∂µ + iCµ , Cµ = −iU i∂µUi − iψa∂µψa , (A.2)

and ψa = ψ∗
a and a = 1, 2.
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A.2 The SU(4)/S(U(2) × U(2)) model

The SO(6) ∼ SU(4) sub-sector sigma model Lagrangian is [18]

LLL SU(4) = LSU(4) WZ − 1

8
Tr(∂1m)2 − 1

32
Tr(m∂1m)2 + Λ(m − m3)

= −iV i∂τVi −
1

2
|DσVi|2 + Λ1(V

iVi − 1) + Λ2(ViVi − 1) + Λ∗
2(V

iV i − 1) ,(A.3)

where mij is a 6 × 6 matrix, related to Vi by

mij = ViV
j − VjV

i , (A.4)

and

Dµ ≡ ∂µ − iCµ , Cµ = −iV i∂µVi . (A.5)

Let us define

MA
B =

1

2
mijρ

ijA
B , mij =

1

4
tr(Mρij) , (A.6)

where ρ are the usual SU(4) ρ-matrices. Notice that

TrM = 0 , M † = M , M2 = M . (A.7)

and so we can write it as

M = 2XX† − 1 = −2Y Y † + 1 , (A.8)

where now X and Y are 4 × 2 matrices which satisfy

X†X = 12 , Y †Y = 12 , X†Y = 0 , Y †X = 0 , (A.9)

XX† + Y Y † = 14 . (A.10)

Further we can write the 4 × 2 matrix X as two four-component vectors uA and vA

X = (uA, vA) , (A.11)

in terms of which MA
B can be written as

MA
B = 2uAuB + 2vAvB − δA

B , (A.12)

with

uAuA = 1 , vAvA = 1 , uAvA = 0 . (A.13)

We can relate uA and vA to Vi by

Vi =
1√
2
uAρi

ABvB , V i =
1√
2
vAρiABuB . (A.14)

It is an easy check to see that these are consistent with

ViV
i = 1 , ViVi = 0 , MA

B = ViV
jρijA

B . (A.15)
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In terms of these, the Lagrangian is

LLL SU(4) = −iuA∂0uA − ivA∂0vA − 1

2

(

∂1u
A∂1uA + ∂1v

A∂1vA

+uA∂1uAuB∂1uB + vA∂1vAvB∂1vB + 2uA∂1vAvB∂1uB

)

= −iTr(X†∂0X) − 1

2
Tr(D̄1X

†D1X) , (A.16)

As before

X = (uA, vA) , X† ≡
(

uA

vA

)

, (A.17)

DµX = ∂µX − XX†∂µX . (A.18)

The action (A.16) has a local U(2) invariance

X → XU(τ, σ) , (A.19)

for U(τ, σ) a general U(2) matrix

U †(τ, σ)U(τ, σ) = U(τ, σ)U †(τ, σ) = 12 . (A.20)

In terms of the uA and vA the action (A.16) is invariant with respect to the following local

transformations

(uA, vA) → (cos θ(τ, σ)uA + sin θ(τ, σ) vA,− sin θ(τ, σ)uA + cos θ(τ, σ) vA) ,

(uA, vA) → (eiφ1(τ,σ)uA, eiφ1(τ,σ)vA) ,

(uA, vA) → (eiφ2(τ,σ)uA, e−iφ2(τ,σ)vA) ,

(uA, vA) → (eiφ3(τ,σ)vA,−eiφ3(τ,σ)uA) , (A.21)

A.2.1 Subsectors of the SU(4)/S(U(2) × U(2)) model

When written in terms of the Vi, the Lagrangian LSU(4) can be reduced to the SU(3)

sub-sector by requiring

V 2a = −iV 2a−1 ≡ 1√
2
Ua , a = 1, 2, 3 , (A.22)

which can further be restriced to the SU(2) subsector for V 5 = 0 = V 6. In terms of the uA

and vA this restriction is easily enforced by setting for example

uA = (U1, U2, U3, 0) , vA = (0, 0, 0, 1) . (A.23)

Since UaU
a = 1, this choice satisfies the constraints (A.13). Restricting to the SU(2) sector

is achieved by setting u3 = U3 = 0. Upon inserting these ansatze, the Lagrangian (A.16)

reduces to the Lagrangian (2.16).

Another interesting sub-sector is obtained by setting

uA = (U1, U2, 0, 0) , vA = (0, 0, V3, V4) , (A.24)
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together with the conditions

U1U1 + U2U2 = 1 , V 1V1 + V 2V2 = 1 . (A.25)

This results in SU(2)×SU(2) subsector consisting of two decoupled SU(2) Landau Lifshitz

Lagrangians.

A.3 The SU(2, 2)/S(U(2) × U(2)) model

For later convenience we present here the SO(2, 4)/S(O(2) × O(4)) ∼ SU(2, 2)/S(U(2) ×
U(2)) Landau-Lifshitz Lagrangian

LLL SU(2,2) = −iṼ i∂0Ṽi −
1

2
|DσṼi|2

= −iũA∂0ũA − iṽA∂0ṽA − 1

2

(

∂1ũ
A∂1ũA + ∂1ṽ

A∂1ṽA

−ũA∂1ũAũB∂1ũB − ṽA∂1ṽAṽB∂1tvB − 2ũA∂1ṽAṽB∂1ũB

)

= iTr(X̃†∂0X̃) +
1

2
Tr(D̄1X̃

†D1X̃) , (A.26)

where

Ṽ i ≡ Ṽ ∗
j ηji , where ηij = diag(−1,−1, 1, 1, 1, 1) , (A.27)

and

ũA ≡ ũ∗
BCBA , ṽA ≡ ṽ∗BCBA , where CAB = (1, 1,−1,−1) . (A.28)

The 4 × 2 matrix X̃ has two columns

X̃ = (ũA, ṽA) , (A.29)

and the covariant derivatives are

DµṼi = ∂µṼi + Ṽ j∂µṼjṼi , (A.30)

DµX̃ = ∂µX̃ − X̃X̃†∂µX̃ . (A.31)

We define

X̃† ≡ −
(

ũA

ṽA

)

. (A.32)

This is done for convenience, so that the form of the action in terms of X is independent

of the signature. The fields in the Lagrangian (A.26) now satisfy the constraints

X̃†X̃ = 12 , (A.33)

Ṽ iṼi = −1 , ṼiṼi = 0 , (A.34)

ũAũA = −1 , ṽAṽA = −1 , ũAṽA = 0 . (A.35)

The action (A.26) has a local non-compact U(2) invariance

X̃ → X̃U(τ, σ) , (A.36)

– 24 –



J
H
E
P
0
7
(
2
0
0
7
)
0
0
9

for U(τ, σ) a general U(2) matrix

U †(τ, σ)U(τ, σ) = U(τ, σ)U †(τ, σ) = 12 . (A.37)

In terms of the ũA and ṽA the action (A.26) is invariant with respect to the following local

transformations

(ũA, ṽA) → (cos θ(τ, σ) ũA + sin θ(τ, σ) ṽA,− sin θ(τ, σ) ũA + cos θ(τ, σ) ṽA) ,

(ũA, ṽA) → (eiφ1(τ,σ)ũA, eiφ1(τ,σ)ṽA) ,

(ũA, ṽA) → (eiφ2(τ,σ)ũA, e−iφ2(τ,σ)ṽA) ,

(ũA, ṽA) → (eiφ3(τ,σ)ṽA,−eiφ3(τ,σ)ũA) , (A.38)

To relate the Ṽi coordinates to the ũA, ṽA coordinates recall that the SU(4) ρ matrices

could be combined into 8 × 8 γ matrices of SO(6) as follows

γi =

(

0 ρi
AB

ρiAB 0

)

, i = 1, . . . , 6 , (A.39)

with the γi satisfying the SO(6) anti-commutation relations
{

γi, γj
}

= 2δij . (A.40)

The SO(2, 4) γ-matrix algebra is instead
{

γ̃i, γ̃j
}

= −2ηij . (A.41)

Given a set of SO(6) γ matrices we can define

γ̃i =

{

γi , i = 1, 2 ,

iγi , i = 3, . . . , 6 ,
(A.42)

which satisfy (A.41). Similarily we will define

ρ̃i
AB =

{

ρi
AB , i = 1, 2 ,

iρi
AB , i = 3, . . . , 6 ,

and ρ̃iAB =

{

ρiAB , i = 1, 2 ,

iρiAB , i = 3, . . . , 6 ,

(A.43)

which now satisfy

ρ̃i
AB ρ̃jBC + ρ̃i

AB ρ̃jBC = −2δC
Aηij , (A.44)

as well as

ηij ρ̃
i
AB ρ̃jCD = 2(δC

AδD
B − δD

A δC
B) . (A.45)

Note also that for SU(4) ρ matrices we had

(ρi
AB)∗ = −ρiAB , (A.46)

while for the SU(2,2) ρ̃ matrices we have

(ρ̃i
AB)∗ = ηijρjAB . (A.47)

The relationship between the ṽA, ũA and the Ṽi is

Ṽi =
1√
2
ũAρ̃i

AB ṽB , Ṽ i =
1√
2
ṽAρ̃iABũB . (A.48)

This can be used to derive the equality between the first and second lines in equation (A.26).
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A.3.1 Subsectors of the SU(2, 2)/S(U(2) × U(2)) model

When written in terms of the Vi, the Lagrangian LLL SU(2,2) can be reduced to the SU(1,2)

sub-sector by requiring

Ṽ 2a = −iṼ 2a−1 ≡ 1√
2
Ũa , a = 1, 2, 3 , (A.49)

which can further be restriced to the SU(2) subsector for Ṽ 5 = 0 = Ṽ 6. In terms of the ũA

and ṽA this restriction is easily enforced by setting for example

ũA = (Ũ1, Ũ2, Ũ3, 0) , ṽA = (0, 0, 0, 1) . (A.50)

We require
3

∑

a=1

ηabŨ∗
a Ũb = −1 , (A.51)

so as to satisfy the constraints (A.35). Restricting to the SU(1,1) sector is achieved by

setting ũ3 = Ũ3 = 0. Upon inserting these ansatze, the Lagrangian (A.26) reduces to the

standard SU(1,2) Landau-Lifshitz Lagrangian [18]

LSU(1,2) = −iŨa∂0Ũa −
1

2
|DσŨa|2 + Λ(ŨaŨa + 1) , (A.52)

with a = 1, 2, 3 and Ũa ≡ ηabŨ∗
b .

A.4 The SU(2|2)/S(U(1|1) × U(1|1)) model

Lets construct the LL model on SU(2|2)/S(U(1|1)×U(1|1)). Starting from equation (2.4),

with Tr now replaced by STr we may define

g = (X,Y ) , (A.53)

with X and Y super-matrices which satisfy

X†X = 12 , Y †Y = 12 , XX† + Y Y † =

(

12 0

0 12

)

. (A.54)

The LL Lagrangian for this model is then

LLL SU(2|2) =
i

2
STr

[(

1n 0

0 1m

)

g−1∂0g

]

− 1

4
STr

(

(g−1D1g)(g−1D1g)
)

= iSTr(X†∂0X) − 1

2
STr

[

D̄1X
†D1X

]

, (A.55)

where

D1X ≡ ∂1X − XX†∂1X . (A.56)

The bosonic base of SU(2|2) is SU(2)×SU(2), where in the case of interest to us we write

X = (ũA, vA) , A = 1 . . . , 4 , (A.57)
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with

ũAũA = −1 , vAvA = 1 , (A.58)

and

ũA ≡ ũ∗
BCBA , vA ≡ v∗BCBA , X† ≡ −

(

ũA

vA

)

, (A.59)

where CBA ≡ diag(−1,−1, 1, 1). Note that the first (last) two components of uA (vA) are

bosonic and the last (first) two components of uA (vA) are fermionic.

LLL SU(2|2) = −iũA∂0ũA − ivA∂0vA − 1

2

(

∂1ũ
A∂1ũA + ∂1v

A∂1vA

−ũA∂1ũAũB∂1ũB + vA∂1vAvB∂1vB + 2ũA∂1vAvB∂1ũB

)

. (A.60)

The action (A.60) has a local non-compact U(1|1) invariance

X̃ → X̃U(τ, σ) , (A.61)

for U(τ, σ) a general U(1|1) matrix

U †(τ, σ)U(τ, σ) = U(τ, σ)U †(τ, σ) = 12 . (A.62)

In terms of the ũA and vA the action (A.60) is invariant with respect to the following local

transformations

(ũA, vA) → (ũA + vAθ1(τ, σ), vA + ũAθ1(τ, σ)) ,

(ũA, vA) → (ũA − ivAθ2(τ, σ), vA + iũAθ2(τ, σ)) ,

(ũA, vA) → (eiφ1(τ,σ)ũA, eiφ1(τ,σ)vA) ,

(ũA, vA) → (eiφ2(τ,σ)ũA, e−iφ2(τ,σ)vA) , (A.63)

where ψ1, ψ2 (θ1, θ2) are real Grassmann-even (-odd) valued function.

B. Quantising the action (3.18) in the t + α = κτ gauge

Given the simple form of the action (3.18), (3.23) we present a brief light-cone quantisation

of it here. The main point is that, as expected, the Hamiltonian has a non-zero normal

ordering constant (B.18).

Since the equation of motion for φ+ is

0 = ∂µ (
√

ggµν∂νφ+) , (B.1)

we may impose conformal gauge (gµν = ηµν) and set

φ+ = 2κτ . (B.2)

The fermionic equations of motion then reduce to

0 = (i∂0 + κ)ηi + ∂1ηj , (B.3)
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where i 6= j. The fermionic fields have the following periodicity conditions

η1(τ , 2π) = eiαη1(τ , 0) , η2(τ , 2π) = e−iαη1(τ , 0) , (B.4)

The fermionic equations of motion then are solved by

η1 =

∞
∑

n=−∞

θnei(nσ+ωnτ) + θ̃nei(nσ−ωnτ) , (B.5)

η2 =
∞

∑

n=−∞

ξne−i(nσ+ωnτ) + ξ̃ne−i(nσ−ωnτ) , (B.6)

where

ωn =

√

n2 +
κ2

4
, (B.7)

and for n 6= 0

θ̄ =
in

ωn + κ
ξn ,

¯̃
θ =

−in

ωn − κ
ξ̃n , (B.8)

while for n = 0

0 = θ0 = ξ̃0 . (B.9)

The Virasoro constraints can be used to find φ− in terms of the other fields

0 = ∂0φ− +
i

2
ηi
←→
∂0 ηi − κ

2
ηiηi , (B.10)

0 = ∂1φ− +
i

2
ηi
←→
∂1 ηi . (B.11)

The Nöther current for time translations t → t + ǫ is

jt
µ = −∂µφ+ − ∂µφ− + iηi

←→
∂µηi − 2∂µφ+ηiηi − ǫµ

ν
(

η1
←→
∂ν η2 − η1←→∂ν η2

)

. (B.12)

We can use the equations of motion to write the Hamiltonian of the system as

Hκ ≡ − 1

2π

∫

dσjt
0 = 2κ +

i

2π

∫

dσηi
←→
∂0 ηi . (B.13)

The canonical momentum conjugate to ηi is 4iκηi and so upon quantisation we must

have
{

ηi(τ, σ), ηj(τ, σ
′)
}

= − 1

4κ
δi
jδ(σ − σ′) . (B.14)

As a consequence the mode oscillators have the following non-zero anti-commutators

{

ξ̄n, ξm

}

= −δnm
ωn + κ

16πκωn
,

{

¯̃
ξn, ξ̃m

}

= −δnm
ωn − κ

16πκωn
, (B.15)

together with
{

ξ̄0, ξ0

}

= − 1

8πκ
,

{

¯̃θ0, θ̃0

}

= − 1

8πκ
, (B.16)
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with all other anti-commutators equal to zero. With the convention that ξn,
¯̃
ξn, ξ0 and θ̃0

are the annihilaiton operators the normal ordered expression for Hκ in the quantum theory

is

Hκ = 2κ(ξ̄0ξ0 +
¯̃
θ0θ̃0) + 4

∑

n 6=0

ω2
n

(

ξ̄nξn

ωn + κ
+

ξ̃n
¯̃ξn

ωn − κ

)

+ aκ . (B.17)

The normal ordering constant aκ is

aκ =
1

4πκ

∞
∑

n=−∞

ωn . (B.18)

The remaining non-trivial bosonic Nöther current for the rotations

η1 → eiǫη1 , η2 → e−iǫη2 , (B.19)

is

jc
µ = ∂µφ+(η1η

1 − η2η
2) + 2iηµ

ν∂νφ+(η2η1 + η2η1) . (B.20)

The corresponding normal-ordered conserved current is

J = − 1

2π

∫

dσjc
0 =

κ

π

∫

dσ(η2η
2 − η1η

1)

= 2κ
¯̃
θ0θ̃0 − 2κξ̄0ξ0 +

∑

n 6=0

ωn

(

ξ̃n
¯̃ξn

ωn − κ
− ξ̄nξn

ωn + κ

)

. (B.21)

In this case the normal ordering constant is zero. Since φ− is periodic in σ we require that

0 =

∫ 2π

0
dσ∂1φ− = i

∫ 2π

0
dσηi

←→
∂1 ηi , (B.22)

In the quantum theory this is equivalent to the level matching requirement

0 =
∑

n 6=0

nωn

(

ξ̃n
¯̃ξn

ωn − κ
− ξ̄nξn

ωn + κ

)

| physical 〉 . (B.23)

Finally, we may compute the four non-zero supercharges

Q1 ≡ i

∫ 2π

0

dσ

2π
Q1

0 4 = κe−iκτ dσ

2π
η1 = κ¯̃θ0 , (B.24)

Q2 ≡ i

∫ 2π

0

dσ

2π
Q2

0 3 = κe−iκτ dσ

2π
η2 = κξ̄0 , (B.25)

Q̄1 ≡ i

∫ 2π

0

dσ

2π
Q4

0 1 = κeiκτ dσ

2π
η1 = κθ̃0 , (B.26)

Q̄2 ≡ i

∫ 2π

0

dσ

2π
Q3

0 2 = κeiκτ dσ

2π
η2 = κξ0 , (B.27)

The above (super-)charges form a U(1|1)2 algebra and in particular we find

[Hκ , J ] = 0 ,
{

Qi, Q̄j

}

= − κ

8π
δij . (B.28)
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C. Comments on conformal invariance of the action (3.18)

In this appendix we entertain the possibility of using the action (3.18), (3.23) as a Polyakov

string action. As a warm-up let us integrate out φ− in the action (3.23). We arrive at an

effective action for the fermions in which we may set

φ+ = 2κτ . (C.1)

Explicitly we then have

Leff = (−κ)

∫

d2σ iηi
←→
∂0 ηi − 2κηiηi + η1

←→
∂1 η2 − η1←→∂1 η2 . (C.2)

We may represent the worldsheet gamma matrices as

ρ0 =

(

−1 0

0 1

)

, ρ1 =

(

0 −i

−i 0

)

, (C.3)

and define a world-sheet Dirac spinor as

ψα =

(

η1

η2

)

, α = 1, 2 . (C.4)

The conjugate spinor is then

ψ̄α = (ψ†ρ0)α =
(

−η1, η2

)

α
, (C.5)

and the effective action may be written as

Leff = (−κ)

∫

d2σ iδµ
a ψ̄ρa←→∂µψ + 2κψ̄ψ , (C.6)

where

ψ̄ρa←→∂µψ ≡ ψ̄ρa∂µψ − ∂µψ̄γaψ . (C.7)

This is simply the Lagrangian for a worldsheet Dirac fermion of mass 2κ. Since such

fermions are not conformal, we get the first indication that the Lagrangian (3.18) is also

not conformal.

With the above definitions for ρa, ψα and ψ̄α we can re-write the action (3.18) as

L =

∫

d2σ
√−g

(

gµν∂µφ+∂νφ− + ieµ
a ψ̄ρa←→∂µψ + 2mψ̄ψ

)

, (C.8)

where

eµ
a =

(

gµν∂νφ+ ,
1√−g

ǫµν∂νφ+

)

. (C.9)

We have written the above expression in the form of an inverse zwei-bein; we will see

shortly that this is indeed justified. The corresponding zwei-bein is

ea
µ = (∂µφ+ , ǫµν∂νφ+) , (C.10)
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and the metric is

Gµν ≡ ea
µeb

νηab = − 1

m
gµν . (C.11)

Above

m ≡ gµν∂µφ+∂νφ+ =
√

−Gµν∂µφ+∂νφ+ , (C.12)

is the norm of φ+, which needs to be non-zero. For completness note that the determinant

of the metric and the zwei-bein are

G ≡ det Gµν =
g

m2
, e ≡ det(ea

µ) = −
√−g

m
. (C.13)

Rescaling fermions in the action (C.8) by

ψ → m−1/2ψ , (C.14)

gives

L =

∫

d2σ
√−g

(

gµν∂µφ+∂νφ− + im−1eµ
a ψ̄ρa←→∂µψ + 2ψ̄ψ

)

. (C.15)

Integrating by parts this can be written as

L =

∫

d2σ
√−g

(

gµν∂µφ+∂νφ− + 2im−1eµ
a ψ̄ρa∂µψ +

∂µ(eµ
a
√−gm−1)√−g

ψ̄ρaψ + 2ψ̄ψ

)

=

∫

d2σ
√−g

(

gµν∂µφ+∂νφ− + 2im−1eµ
a ψ̄ρa∂µψ + m−1 ∂µ(eµ

a

√
G)√

G
ψ̄ρaψ + 2ψ̄ψ

)

=

∫

d2σ
√−g

(

gµν∂µφ+∂νφ− + 2im−1eµ
a ψ̄ρa∂µψ + m−1ω01

a ψ̄ρaρ01ψ + 2ψ̄ψ
)

=

∫

d2σ
√
−G

(

−Gµν∂µφ+∂νφ− + 2ψ̄(iρµDµ + m)ψ
)

. (C.16)

The final form of the action is that of a world-sheet Dirac fermion of mass m together with

the fields φ± moving in a curved metric Gµν . Above we have used the fact that in two

dimensions for any zwei-bein êa
µ and corresponding metric ĝµν , the spin connection ω̂ab

µ can

be written as

ω̂ab
µ = −ǫab 1√

ĝ
êc
µǫc

d∂ν

(

êν
d

√

ĝ
)

, (C.17)

where ǫab (ǫc
d) is the flat Minkowski space ǫ-tensor with non-zero components ǫ01 = −ǫ10 =

1 (ǫ0
1 = ǫ1

0 = −1). This formula can be derived from the xpressions presentd in ap-

pendix D.

We may now want to define a string theory path integral for this Lagrangian. To do so

we consider the Polyakov path integral for the Lagrangian (C.16). Since the path integral

integrates over metrics gµν , and the Lagrangian is a function of the metric Gµν = −m−1gµν

we first rescale

gµν → −m1/2gµν , (C.18)

in order to eliminate the metric Gµν . We arrive at a Polyakov-type path-integral with

action

L →
∫

d2σ
√−g

(

gµν∂µφ+∂νφ− + 2ψ̄(iρµDµ +
√

m)ψ
)

. (C.19)
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This Lagrangian is conformally invariant. One way to see this is to generalise the argu-

ment presented in [32] which considered sigma-models on plane-wave backgrounds. Let us

integrate out the fermions to obtain an effective Lagrangian for φ±
15

Leff ∼ ηµν∂µφ+∂µφ− +
i

2
log det

[

− δ2L
δηδη

]

= ηµν∂µφ+∂µφ− +
i

2
log det

[

∂µ1φ+Πµ1µ2
+ ∂µ2∂ν1φ+Πν1ν2

− ∂ν2 +
1

4
m2

]

= ηµν∂µφ+∂µφ− +
i

2
det

[

∂2 +
1

4
m2

]

+
i

2
log(m2)

∼ ηµν∂µφ+∂µφ− + ηµν∂µφ+∂µφ+ ln Λ , (C.20)

where Λ is the cut-off. We can re-absorb this divergent piece by re-defining φ−

φ− → φ− − φ+ ln Λ . (C.21)

This shows that the Lagrangian (C.19) is conformal. As it stands however, this Lagrangian

is not Weyl invariant and, just as in [32], we need to turn on a dilaton

Φ = φ2
+ . (C.22)

D. Two dimensional spin connection

Let us consider a geenral Lorenzian two dimensional metric gµν which we will parametrise

for convenience as

gµν =

(

a2 b

b d2

)

, (D.1)

where a, b and d are complex functions of τ and σ the coordinates on the manifold. The

zwei-bein from which this follows is given by

e1
µ = (a sinh ρ ,−d sinh ρ) , e2

µ = (a cosh ρ , d cosh ρ) , (D.2)

where

cosh
1

2
ρ =

b

ad
. (D.3)

The Christoffel symbols

Γµ
νλ =

1

2
gµκ (gκν ,λ + gκλ ,ν − gνλ ,κ) (D.4)

are given by

Γ1
11 = g−1

(

aba,1 + ad2a,0 − bb,0

)

, (D.5)

Γ1
12 = Γ1

21 = g−1
(

d2aa,1 − bdd,0

)

, (D.6)

Γ1
22 = g−1

(

d2b,1 − bdd,1 − d3d,0

)

, (D.7)

Γ2
11 = g−1

(

−a3a,1 − aba,0 + a2b,0

)

, (D.8)

Γ2
12 = Γ1

21 = g−1
(

−aba,1 + a2dd,0

)

, (D.9)

Γ2
22 = g−1

(

a2dd,1 − bb,1 + bdd,0

)

. (D.10)

15I am grateful to A. Tseytlin for a number of discussions and explanations of these issues.
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where g = det gµν . It is easy to check that these satisfy the defining equation

gµν ,λ − gκνΓ
κ
µλ − gκµΓκ

νλ = 0 . (D.11)

The spin connection ωmn
µ can be determined from the following equation

Dµem
ν = ∂µem

ν + ωm
µ nen

ν − Γκ
µνem

κ = 0 . (D.12)

Since ωmn
µ is anti-symmetric in (m,n) the non-zero components are given by

ω01
0 = −ω10

0 =
−2a2da,1 − bda,0 + adb,0 + abd,0

2ad
√−g

, (D.13)

ω01
1 = −ω10

1 =
−bda,1 − adb,1 + abd,1 + 2ad2d,0

2ad
√−g

. (D.14)

E. T-dual version of the action (3.18)

Performing T-duality for the action (3.18) along α leads to a very simple form for an

equivalent action. In this appendix we breifly present these results. To T-dualise along α

we replace ∂µα by Aα and adding the Lagrange multiplier term ǫµνAµ∂να̃. The Aµ are

then integrated out and we obtain the action

Ld
κ =

∫

d2σ

√
ggµν

1 − ηiηi

(

−(∂µt − i

2
ηi
←→
∂µηi)(∂νt − i

2
ηi
←→
∂ν ηi)

+(∂µα̃ − (η1
←→
∂µη2 − η1←→∂µη2))(∂ν α̃ − (η1

←→
∂ν η2 − η1←→∂ν η2))

)

+
2ǫµν

1 − ηiηi

(

(∂µt − i

2
ηi
←→
∂µηi)(∂ν α̃ − (η1

←→
∂ν η2 − η1←→∂ν η2))

)

(E.1)

where we have used the fact that up to total derivatives

∫

d2σ
ǫµν

1 − ηiηi
∂µt∂να̃ηiηi =

∫

d2σ
ǫµν

1 − ηiηi
∂µt∂να̃ . (E.2)

At the level of classical equations of motion we may integrate out the metric to get a

Nambu-Goto type action

Ld NG
κ =

∫

d2σ
ǫµν

1 − ηiηi

(

(∂µt − iηi
←→
∂µηi)(∂ν α̃ − (η1

←→
∂ν η2 − η1←→∂ν η2))

)

, (E.3)

where we have rescaled t → t/2 and multiplied the whole action by a factor of 2. The

Nambu-Goto form of the action is particularily simple due to the ’two-dimensional’ target

space form of the action (E.1). The equations of motion for α̃ and t imply that

1

1 − ηiηi
(∂µt − i

2
ηi
←→
∂µηi) = ∂µχ1 , (E.4)

1

1 − ηiηi
(∂ν α̃ − (η1

←→
∂ν η2 − η1←→∂ν η2) = ∂µχ2 , (E.5)
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where χi are arbitrary Grassmann-even functions of τ and σ. The fermion equations of

motion can then be written in form notation as

0 = ηidχ1∧dχ2 − idηi∧dχ2 + idχ1∧dηj , (E.6)

where i 6= j.

Let us combine the (1 + 1 dimensional) spacetime coordinates into a two-vector

xi = (t, α̃)i , i = 1, 2 , (E.7)

and represent the spacetime gamma matrices as

γ0 =

(

−1 0

0 1

)

, γ1 =

(

0 −i

−i 0

)

, (E.8)

a spacetime Dirac spinor as

Ψα =

(

η1

η2

)

, α = 1, 2 . (E.9)

The conjugate spinor is then

Ψ̄α = (Ψ†γ0)α =
(

−η1, η2

)

α
. (E.10)

With these definitions the Nambu-Goto action can be written as

Ld NG
κ =

1

2

∫

d2σ
ǫijǫ

µν

1 + Ψ2
Πi

µΠj
ν , (E.11)

where we define

Πi
µ ≡ (∂µxi − iΨ̄γi←→∂µΨ) , Ψ2 = Ψ̄Ψ , (E.12)

and

Ψ̄γi←→∂µΨ ≡ Ψ̄γi∂µΨ − ∂µΨ̄γiΨ . (E.13)
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